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Abstract

The reproducing kernel particle method (RKPM) is a meshless method used to solve general
boundary value problems using the principle of virtual work. RKPM corrects the kernel
approximation by introducing reproducing conditions which force the method to be complete
to arbritrary order polynomials selected by the user. Effort in recent years has led to the
implementation of RKPM within the Sierra/SM physics software framework. The purpose
of this report is to investigate convergence of RKPM for verification and validation purposes
as well as to demonstrate the large deformation capability of RKPM in problems where the
finite element method is known to experience difficulty. Results from analyses using RKPM
are compared against finite element analysis. A host of issues associated with RKPM are
identified and a number of potential improvements are discussed for future work.
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Chapter 1

Introduction

The reproducing kernel particle method (RKPM) is a meshless method used to solve
general boundary value problems (BVP) using the principle of virtual work. The method
uses a corrected kernel function with compact support constructed such that partition of
unity and first-order consistency within the approximation space are recovered. RKPM
corrects the kernel approximation by introducing reproducing conditions which force the
method to be complete to arbritrary order polynomials selected by the user. The method
can be viewed as a correction to the kernel used in smoothed particle hydrodynamics (SPH),
another meshless method which in general does not have the aforementioned properties. This
lends convergence to the RKPM method and provides RKPM the ability to model rigid body
motions for a body.

RKPM has a host of advantages over convential methods such as finite element analysis
(FEA). RKPM is approximated using a discrete kernel convolution with a corrected kernel.
This causes the reproducing kernel (RK) shape functions to have continuity equal to the
continuity present in the kernel [3]. The continuity of the RK approximation is independent
of the basis order of approximation. This allows the user to model certain classes of problems
using RKPM which demand a certain order of continuity whereas FEA is limited to C0

continuous functions by design. In addition, the RKPM method does not require elements
and element connectivity. This obviates the issue of mesh entanglement and unsatisfactory
elements associated with FEA. This also enables rapid design to analysis (RDA). However,
RKPM involves inverting a moment matrix at each evaluation point of the shape function,
making the evaluation of shape functions slower than FEA. Although currently RKPM is
implemented in a Lagrangian formulation, the analysis is still considerably slow compared
to FEA even though the shape function evaluation is performed only once. In addition,
RKPM discards surface information, making it difficult to implement Neumman boundary
conditions (BC) and contact type problems.

Effort in recent years has led to the implementation of RKPM within the Sierra/SM
physics software framework. Previous work by Giffin [7] examined the convergence of RKPM.
Additional functionality has since been added. The purpose of this report is to reinvestigate
convergence of RKPM for verification and validation purposes as well as to demonstrate the
large deformation capability of RKPM in problems where FEA is known to experience dif-
ficulty. Results from analyses using RKPM are compared against finite element analysis. A
host of issues associated with RKPM are identified and a number of potential improvements
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are discussed for future work.

This report is organized as follows. Chapter 2 briefly discusses the implementation of
RKPM within Sierra/SM, including an overview of the RK shape function formulation and
general guidelines for including RKPM in a Sierra/SM input deck. Chapter 3 discusses
a number of example problems run using RKPM for verification and validation. A large
deformation example is simulated with a foam crush problem and is discussed in Chapter 4.
Future goals for the coming fiscal year are proposed for RKPM in Chapter 5 and includes
a number of capabilities necessary to meet future milestones. Chapter 6 elaborates on a
number of issues currently unresolved in RKPM analysis. Intermediate measures which
currently exist are discussed and preferred solutions are proposed.
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Chapter 2

RKPM Implementation

As mentioned previously in Section 1, RKPM does not utilize a mesh or mesh connectivity
in determining its shape functions. This creates significant complexity in formulating the
shape function, and is reviewed here. After the formulation is explained, a description for
including RKPM within an Sierra/SM analysis is given, with some general guidelines to
ensure the method runs correctly.

Overview of RKPM

Given a set of NP points in the closed domain, Ω ⊂ Rd, the approximation function is
given by

uh(x) =
NP∑
I=1

ψI(x)uI (2.1)

where ψI represents the RK shape function at node I, xI is the physical coordinate of that
node, and uI is the scalar coefficient which multiplies with the shape function. It should
be noted that uI is not the nodal displacement as in FEA as the RK shape functions do
not possess the kronecker delta property in general. As such, it is termed the “generalized
coordinate” in RKPM [3].

The shape function is given by the following equation

ψI(x) = C(x;x− xI)φa(x− xI) (2.2)

Here, C(x;x − xI) represents a correction function, which is responsible for recovering the
polynomial completeness that is not present by simply using the kernel itself as in SPH. It
is typically composed of a set of polynomial basis functions and their coefficients. It takes
the form below.

C(x;x− xI) =
n∑

i+j+k=0

(x1 − x1I)
i(x2 − x2I)

j(x3 − x3I)
kbijk (2.3)

≡HT (x− xI)b(x) (2.4)

HT (x− xI) =
[
1 x1 − x1I . . . x3 − x3I (x1 − x1I)

2 . . . (x3 − x3I)
n
]

(2.5)
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Substituting the above into Equation 2.2 produces

ψI(x) = HT (x− xI)b(x)φa(x− xI) (2.6)

The above equations follow a moving least squares (MLS) methodology. In fact, by only
using polynomial basis functions in H(x−xI) above, then the RKPM method is equivalent
to MLS approximation. However, the basis vector may be “enriched” with more functions
besides simple polynomials [9], which is beyond the scope of this document.

All that is left is to determine the coefficient vector, b(x). To do this, we assert that the
shape functions have polynomial completeness, given below.

NP∑
I=1

ψI(xI)x
i
1Ix

j
2Ix

k
3I = xi1x

j
2x

k
3, 0 ≤ i+ j + k ≤ n (2.7)

The polynomial completeness may equivalently be written as [3]

NP∑
I=1

ψI(xI)(x1 − x1I)
i(x2 − x2I)

j(x3 − x3I)
k = δ0iδ0jδ0k (2.8)

NP∑
I=1

ψI(xI)H(x− xI) = H(0) (2.9)

The above is termed the reproducing condition for the approximation function and repro-
duces the polynomial completeness in the basis space. Taking Equation 2.6 and substituting
into the above produces

NP∑
I=1

H(x− xI)H
T (x− xI)b(x)φa(x− xI) = H(0) (2.10)

M(x)b(x) = H(0) (2.11)

where

M (x) =
NP∑
I=1

H(x− xI)H
T (x− xI)φa(x− xI) (2.12)

This gives us an expression to solve for the coefficient vector, b(x). Inverting this expression
and substituting back into Equation 2.6 gives

ψI(x) = HT (0)M−1(x)H(x− xI)φa(x− xI) (2.13)

After having finally arrived at the formulation of the shape function, it may be used directly
to approximate the solution space and employed in the principle of virtual work, just as with
the FEA. As such, the definitions for the deformation gradient, F , rate of deformation, D,
and velocity gradient, L, are all similar to FEA, where only the derivatives of the RK shape
functions are required. Once these values are determined, they can be passed as inputs to
the LAME material library present in Sierra/SM just as one would with FEA. Although
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this works in theory, there are some materials which require additional parameters that are
not currently handled in RKPM. However, the large majority of material models in the
production code work with RKPM.

Although the definition of materials is straightforward with RKPM, the imposition of
essential, or Dirichlet BCs is not. This is due to the loss of the kronecker delta property in
the RK shape function, i.e.

ψI(xJ) 6= δIJ (2.14)

Because of this, in order to determine the physical displacement or other quantity at the
nodes, a full summation must be performed over the shape functions whose support covers
that node.

NPx∑
I=1

ψI(xI)uI = ûI (2.15)

where above ûI is the true nodal displacement in the RK approximation and NPx is the
number of nodes whose support covers the evaluation point. For this reason, uI is termed
the “generalized coordinate.” To impose displacement boundary conditions, the system
of equations must be modified either by using a transformed method where the boundary
conditions are applied via Lagrange multipliers manipulated in order to simplify the system or
by recovering the kronecker delta property at the boundary through the use of the boundary
singular kernel method [4].

An example of the RK shape functions in one dimension and a demonstration of quadratic
completeness is illustrated in Figure 2.1. The shape functions are generated using quadratic
basis with a C2 continuous spline for a kernel. A non-uniform node spacing was employed
to demonstrate the flexibility of the method under non-uniform discretizations. One can see
the shape functions do not exhibit the kronecker delta property given by Equation 2.14.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

NP∑
I=1

ψIx
2
I

ψI

xI

Figure 2.1: Shape function illustration
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An additional and major complication involves the integration of the domain required in
the variational approach. Because the element connectivity is effectively discarded, Gauss-
Legendre quadrature is no longer straightforward. In addition, the use of Gauss-Legendre
quadrature will introduce error into the integration because of the irregular nodal domains
and because the MLS procedure produces shape functions that are rational instead of poly-
nomial expressions. Use of Gauss-Legendre quadrature will cause RKPM to fail the patch
test, even with a large number of integration points [5]. To remedy this issue, nodal inte-
gration procedures are employed including stabilized nodal conforming integration (SCNI),
stabilized non-conforming nodal integration (SNNI) and variationally consistent stabilized
non-conforming nodal integration (VCSNNI) [2, 5]. These methods perform a strain smooth-
ing by constructing integration cells with so-called integration constraints imposed on them.
The explanation of these methods is outside the scope of this document.

RKPM Input within Sierra/SM

Converting a Sierra/SM input deck to an RKPM analysis is a rather straightforward
process. Only two additional blocks need to be included. The first defines the section and
RKPM paramaters for use in the analysis. It is defined in the “Sierra” scope of the input
deck.

BEGIN RKPM SECTION <s t r i ng> sect ion name
SUPPORT SIZE = <r ea l> normal i zed support
BASIS ORDER = <int>order
KERNEL TYPE = <int>k e r n e l t y p e
KERNEL SHAPE = <s t r i ng>SPHERE | BOX
INTEGRATION METHOD = <s t r i ng>SCNI | SNNI | VCSNNI
STABILIZATION COEFFICIENT = <r ea l> c o e f f i c i e n t
FORMULATION = <s t r i ng> LAGRANGIAN| SEMI−LAGRANGIAN

END RKPM SECTION <s t r i ng> sect ion name

The options above must be defined with care in order for the RKPM analysis to run without
errors.

• Support Size: The support size is a scale factor which multiplies with the distance to
the nearest neighbor of an RK node. This multiplied distance becomes the support size
for the RK node in the discretized domain, Ω, and may have a different support length
in each cardinal direction. For linear basis order, a scale factor of 1.6 is determines
the number of neighbors used to evaluate the shape function. The scale factor must
increase by 1 for each increase in the basis order. For example, if quadratic basis is
used instead, the scale factor should be increased to 2.6.

• Basis Order: The basis order determines the order of completeness of the basis func-
tions. This may be chosen to an arbitrary order by the user. However, if the basis
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order is chosen higher than 1, then the SCNI integration scheme cannot be used and
the VC-SNNI integration scheme must be used instead for convergence [2]. Therefore,
linear basis functions are recommended, which also have the advantage of increasing
the speed of analysis.

• Kernel Type: The reproducing conditions described in Chapter 2 are automatically
enforced within the RKPM code, but the user is free to choose the type of kernel used
in the approximation. Up to 6 kernels exist; an input of 0 uses a C0 linear B-spline
whereas an input of 5 uses a C4 quintic B-spline for a kernel.

• Kernel Shape: Kernels currently only have rectangular support in Sierra/SM. El-
lipsoidal support is planned for future implementation. This parameter defaults to
“BOX,” regardless of user input.

• Integration Method: As mentioned before, this determines the nodal integration method
used to evaluate the internal forces in the RKPM formulation. Three options exist:
SCNI, SNNI, and VCSNNI. Currently, the RKPM method is implemented with a La-
grangian formulation. As a result, RKPM only uses the referential coordinate in its
calculations, and the SCNI method of integration is recommended here.

• Stabilization Coefficient: This parameter populates the integration cell used above
with additional evaluation points used for stabilization. This value ranges between 0
and 1, with 0 meaning that evaluation points are added but no stabilization occurs,
adding time to the total RKPM analysis. As such, if no stabilization is required, this
option should be omitted. The use of stabilization in the RKPM section of Sierra/SM
does not always work and needs to be inspected for potential bugs.

• Formulation: Currently, the RKPM method is only implemented in a Lagrangian
formulation. As such, the analysis defaults to “Lagrangian,” regardless of user input.
Semi-Lagrangian (which is similar to Updated Lagrangian) is planned for the next
fiscal year.

Once the section has been defined, the particles need to be created. This can be accomplished
using the built-in function for converting particles from an FEA block. The following block
is included in the “Presto” scope of the input deck.

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION
BLOCK = <s t r i n g l i s t >block names
SECTION = <s t r i ng>p a r t i c l e s e c t i o n

END [CONVERSION TO PARTICLES AT INITIALIZATION ]

Alternatively, one may use the spheregen.py script and can be invoked in the terminal
using

spheregen . py −−n o d e s a s a t t r my f i l e . g

One final option that requires clarification is the definition of contact with RKPM. Currently,
the contact surfaces required for the dash contact are implemented by lofting icosahedra (a
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faceted sphere with 20 faces) around each RK particle. Each icosahedron is sized such that
the volume of the lofted sphere is the same as the volume of the integration cell of the
RK node. This produces a non-contiguous contact surface for the RKPM block and gaps
may form should the material experience significant deformation. As such, defining contact
between two RKPM blocks is not recommended as the two blocks may “slip” through one
another.

In addition, all of the RK nodes become lofted when contact is activated. No option
exists to convert only the nodes located on the contact surface. This adds significant time to
the analysis, as the method will check for contact on interior nodes where it is not necessary.
This also complicates self-contact because the lofted spheres may overlap. Should this be
the case (as it almost always is), then an instability will result. This is not recommended, as
the self-contact may not even work due to the “slip-through” mentioned above. In addition,
in the rare case that none of the icosahedra overlap with each other, then in problems of
compression the interior nodes will potentially contact one another and the material will
cease to deform because the icosahedra themselves are not compressible.

Contact in RKPM is most easily modeled when the contact definition is with a FEA
block, which does have a continuous contact surface. For contact to work in this scenario,
the RKPM block must be sized such that the resulting icosahedra produced from lofting do
not intersect the contact surface in the FEA analysis. If this occurs, then the dash contact
algorithm will attempt to remove this interpenetration, which will cause an instability on
the very first time step. Sizing the block during the preprocessing stage must then be done
with care and requires some user judgement, as it is not possible to determine the size of
the spheres before running the analysis. (A manual sizing option exists for lofted objects in
Sierra/SM but on trying this in RKPM, it did not appear to work correctly.)
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Chapter 3

Verification and Validation

A number of problems were analyzed using the RKPM implementation. These include
wave propagation in a bar, taylor bar impact, and a traction patch test. Details and results
of each analysis are given in the sections that follow.

Wave Propagation in a Bar

In this problem, a shock wave is induced in an elastic bar. The bar measures 2 cm ×
0.02 cm×0.02 cm and is fixed on the left side. An initial velocity of 1000 cm/s is imposed on
the entire body. The bar uses an elastic material with a Young’s modulus of E = 300 GPa, a
Poisson’s ratio of ν = 0, and a density of ρ = 7.8 g/cm3. A zero Poisson’s ratio is used here
to limit the wave propagation to the axial direction only, effectively making the analysis a
1D wave propagation problem.

Due to the fixed boundary condition on the left side of the bar, a compression wave with
a vertical front is introduced and travels the length of the bar. Once the wave reaches the
free end, it rebounds and the bar begins to travel in the opposite direction and the stress
behind the wave goes to zero. After reaching the wall, the wave again rebounds, this time
creating a tension wave, and so forth. The exact displacement is given by a Fourier series
representation as

u1(x, t) =
∞∑
n=1

(
An sin (ωnt) sin

(
(2n− 1)π

2L
x

))
(3.1)

An =
8v0L

(2n− 1)2π2

√
ρ

E
(3.2)

ωn =
(2n− 1)π

2L

√
E

ρ
(3.3)

This problem was discretized and run using RKPM analysis. Linear basis functions were
employed and a C4 continous spline was used for the kernel. Three separate discretizations
were considered. The coarse discretization used 164 nodes, the medium discretization used
1449 nodes, and the fine discretization used 31 409 nodes. The displacement at the center of
the bar for the RKPM approximation as well as the exact displacement is shown in Figure 3.1.
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The displacements can be seen to converge to the exact solution. At the coarse discretization,
large oscillations propagate through the solution, whereas for the fine discretizations these
oscillations are almost completely removed.

A convergence study in the energy norm was carried out. As described above, a material
point is characterized by two states: one in which velocity is present and stress is not and
vice versa. The kinetic energy present in the system may be determined by the length of
actively moving material. Conversely, the internal energy is just the opposite, characterized
by the length of strained material instead. These expressions for the exact energy in the
system are thus

KE =
1

2
ρxwaveAv

2
0 (3.4)

IE =
1

2
ρ (Lbar − xwave)Av

2
0 (3.5)

xwave = ct (3.6)

c =
√
E/ρ (3.7)
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Figure 3.1: Wave propagation measured at center of bar
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The energy in the approximate solution requires some additional work. Because the SCNI
method was used, the strains and stresses are rendered constant within each integration
cell [5]. Thus, to measure the internal energy of the approximate solution was as simple as
taking the scalar product between the stress and strain tensors and multiplying them by the
volume of the integration cell.

IEh =
1

2

NP∑
I=1

Eh
I : Sh

I VI (3.8)

where in the above, Eh
I is the Green-Lagrange strain tensor, Sh

I is the second Piola-Kirchhoff
stress tensor, and VI is the volume of the integration cell. These two expressions may be
used to determine the energy of the error between the solutions.

a(e, e) = a(u,u)− a(uh,uh) (3.9)

where

a(u,u) = 2IE (3.10)

a(uh,uh) = 2IEh (3.11)

e = u− uh (3.12)

Equation 3.9 is a result of the Galerkin orthogonality property in the principle of virtual
work, where a(e,uh) = 0, and is known as the Pythagorean corollary [10]. The energy norm
can then be given as

‖u− uh‖E =
√
a(e, e) (3.13)

Using this strategy, the convergence study was carried out. The bar measuring 2 cm ×
0.02 cm×0.02 cm was discretized and run using RKPM with linear basis and a C4 continous
spline kernel function. Seven discretizations were considered for the analysis where the input
file was refined in the axial direction only. Given the Poission’s ratio, ν = 0, no refinement
in the transverse directions were necessary. The characteristic length was halved for each
level of refinement beginning with h0 = 0.08 cm, and the critical time step was quartered
beginning with ∆t0 = 2.0× 10−8 s. A user-time step was supplied and refined faster than
the characteristic length in order to isolate the error to the spatial discretization. The energy
of the solutions were evaluated when the wave front traveled half of the length of the bar.

Figure 3.2 shows the convergence plot in the energy norm. A convergence rate of O(h0.5)
was observed, which is half of the expected convergence rate for the energy norm. This may
be due to two possibilities. First, the energies between the two solutions were not integrated
the same way, which may introduce inconsistencies in the error and lead to a lower order of
convergence. Second, the problem itself is ill-posed. A vertical shock front exists but the
approximation method cannot represent a vertical front with a C4 continuous approximation
function. As such, the problem is not guaranteed to converge at the expected rate. However,
the system does appear to be converging at a consistent rate.

In addition to a convergence study, a scaling study was carried out. In this study, the
wave propagation was repeated but with a total of 360 192 RK nodes. This is approximately
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the maximum number of particles before running out of memory on a single compute node
on the cluster. The problem was repeated with 1, 2, 4, 8, 16, 32, 64, and 128 nodes. The
results of the scaling study are illustrated in Figure 3.3, with an approximate slope of 0.87
in log-log space. An ideal rate of 1 is desired, but communication between processors likely
leads to a slightly lower rate. Runs with more processors than 128 begin to experience
diminishing returns. This suggests a single processor can accomodate roughly 2500-3000
nodes as a general guideline for selecting the number of processors.

Taylor Bar Impact

To verify the contact algorithm, a Taylor bar impact problem was investigated. This
problem attempts to replicate the experiments given in [15] where various steel and aluminum
rods were launched at high velocities and impacted against a rigid wall. The experiment
measured the final height of the specimens and compared them to the initial height.

The experiments described above were simulated using the RKPM method. Two separate
analyses were performed: one where contact was simulated by fixing the vertical direction
of the impacting face of the bar; a second where contact surfaces were defined between the
RKPM block and a rigid wall.

The Taylor bar problem using RKPM simulated a bar made of steel with a radius of
0.381 cm and a height of 1.27 cm. An initial velocity of 282 cm/s was used for the analysis.
The Johnson-Cook material model was employed to model the material response. The
Johnson-Cook material model has a yield stress that is strain dependent and temperature
dependent. The yield stress is given by [13]

σeq = (σy + hε̄n) (1 + C ln ε̇∗) (1− T ∗m) (3.14)

ε∗ =
ε̇

ε̇0

(3.15)

T ∗ =
T − T0

Tm − T0

(3.16)

where the variables and their values used in the Taylor bar simulation is outlined below in
Table 3.1. Temperature is updated using adiabatic heating, where a percentage of the strain
energy due to plastic deformation is converted to heat. By default, the percentage converted
is 95 %.

Illustrations for the taylor bar impact are given in Figure 3.4. Figure 3.4a shows the
taylor bar modeled with a fixed bounday condition in the axial direction and Figure 3.4b
shows the taylor bar with a contact condition specificied between the RKPM and FEA bodies.
Although the model with a fixed boundary condition is sufficient, the model utilizing contact
is more realistic of the test conditions. Here, the bar can be seen to flare at the impact end,
which was observed in the test specimens [15].
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Table 3.1: Johnson-cook material model parameters for the taylor bar simulation [11, 12]

Parameter Value
Young’s modulus E 200 GPa

Poisson’s ratio ν 0.29
Density ρ 7830 kg/m3

Specific heat capacity Cp 477 J/kgK
Reference temperature T0 300 K
Melting temperature Tm 1793 K

Temperature softening exponent m 1.03
Yield stress σy 792 MPa

Strain hardening coefficient h 510 MPa
Strain hardening exponent n 0.26

Strain rate hardening exponent C 0.014
Reference strain rate ε̇0 1.0 s−1

The height of the taylor bar simulation is compared against the experimental height in
Figure 3.5. The grey, horizontal line is the measured height from the experiment and the
other lines are the predictions given by the simulations. Three discretizations are considered:
a coarse discretization with 938 nodes, a medium discretization with 26 488 nodes, and a
fine discretization with 46 592 nodes [12]. The medium and fine refinements have a nearly
identical response and predict the final height very well. The coarse discretization, while
appearing to have less total deformation, also approximates the final height well. These
results show heuristically the convergence of RKPM when applied to a nonlinear problem.

Traction Patch Test

Tractions require special attention for RKPM analysis because of the removal of the
surface definition when the finite element block is converted to particles. As a result, the
RKPM method does not store surface information and the imposition of Neumann type
boundary conditions becomes difficult to implement. However, the elements from the original
mesh are not completely discarded. The analysis simply copies the necessary information
for RKPM but still retains the original finite element mesh from before.

Although RKPM does not include routines to determine external forces due to tractions,
it was discovered that tractions may still be applied to the RKPM analysis. The tractions
are being integrated using the finite element routines and taking the resulting nodal forces
and applying them as forces to the RKPM analysis. This occurs because the original finite
element mesh is never truly discarded; it is simply ignored in the majority of RKPM analysis.

With this information in hand, a patch test was performed using traction boundary
conditions. A bar with dimensions 3.0 × 1.0 × 1.0 was loaded with tractions in the axial
direction at the right end. The prescribed boundary conditions at the left end restricted
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(a) Fixed boundary condition (b) Contact surface

Figure 3.4: Taylor bar impact simulation. Color denotes displacement in the horizontal
direction. [12]
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Figure 3.5: Computed final height of taylor bar [12]
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Figure 3.6: Traction patch test of RKPM simulation

movement in the x-direction only to ensure a linear displacement field was achieved in all
directions. To remove transient motion from the analysis the explicit analysis employs a
halver-cosine ramp function with a duration of 1.0× 10−3 s to limit the amount of oscillation
in the bar.

The result is presented in Figure 3.6. As can be readily observed, the method is satisfying
the patch test for the axial direction. However, slight oscillations near the traction boundary
condition are still present in the transverse direction. Although the traction loads are not
applied consistently with the RKPM formulation, they are still only in the axial direction
and should not produce displacement in the transverse direction. Thus, these oscillations
give rise for concern and require further investigation. It should be noted, however, that very
few methods besides the linear hex element impose traction boundary conditions consistently
with the shape functions and the results presented here are acceptable as an intermediate
measure.
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Chapter 4

Foam Crush Simulation

To demonstrate the large deformation capability of RKPM, a foam-crush simulation was
chosen. This work was based off that by Nick Kerschen and his mentor, Dr. Chris Hammeter.
In their work, an impactor strikes a foam block made of TufFoam which is contained inside of
an aluminum housing. Using FEA, the acceleration experienced in the block was simulated
and compared to experimental results.

Due to the compression experienced by the foam block, this problem made for an ideal
candidate to verify the large deformation capability of RKPM. Towards that end, the simu-
lation was repeated with the only major difference being the use of RK particles to simulate
the foam material as opposed to FEA.

Although the only major difference between the two simulations is the use of RKPM
instead of FEA to simulate the foam block, other minor changes had to be made due to
complexities involved in simulating contact with RK particles. The model uses only a single
RKPM block for the foam and FEA for all other blocks because contact between separate
RKPM blocks is not well behaved. In addition, in the original analysis two foam blocks were
modeled with a contact definition between them. For the same reason listed before, the two
foam blocks were merged and only a single block was considered for RKPM. Finally, the
foam block had to be shortened slightly to introduce a gap between it and the surrounding
objects. This is due to contact surfaces being lofted around RK particles. If a gap was
not introduced, the lofted icosahedra would interpenetrate the surfaces of the FEA blocks,
leading to instability on the first time step of analysis.

The material specified for the foam block is the foam plasticity model. Material properties
for the foam block are given in Table 4.1. This material defines a shear dependent and
pressure dependent yield surface. The law for updating the yield stresses is given by the
following equations [14]

σy,s = σs +Hsφ
ns (4.1)

σy,p = σp +Hpφ
np (4.2)

The evolution of the yield stresses of the foam plasticity model rely on a density parameter,
φ = ρ/ρsolid, rather than on the amount of plastic strain. This approximates a cellular
material as it approaches the density of the solid block of the same material. Foam materials
are expected to experience locking as they approach the solid limit, approximated by using
values of ns and np larger than 1. The larger these values, the faster these the foams lock as
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they approach the maximum density. [14]

The aluminum casing was modeled using an elastic-plastic material. Perfect plasticity was
assumed. Material parameters for the aluminum are given in Table 4.2. The impact block

Table 4.1: Foam plasticity material model parameters for the foam crush simulation.

Parameter Value
Density ρ 35 pcf

Young’s modulus E 66 500 psi
Poisson’s ratio ν 0.30

Deviatoric yield strength σs 1480 psi
Deviatoric hardening Hs 11 200 psi
Deviatoric exponent ns 3

Hydrostatic yield strength σh 1480 psi
Hydrostatic hardening constant Hh 16 500 psi

Hydrostatic exponent nh 3
Associative flow parameter β 0.0

Table 4.2: Elastic plastic material model parameters for the foam crush simulation.

Parameter Value
Density ρ 169 pcf

Young’s modulus E 10 370× 103 psi
Poisson’s ratio ν 0.33
Yield stress σy 10 878 psi

Hardening coefficient H 0.0 psi
Isotropic parameter β 1.0

utilized an elastic material having a Young’s modulus E = 28 000× 103 psi, a Poisson’s ratio
of ν = 0.27, and a density of ρ = 3110 pcf. The impact block was given an initial velocity of
1116 in/s in the downward direction. The simulations were performed to a maximum time
of tmax = 5.0× 10−3 s.

In the figures that follow, the displacement profile as well as the Von Mises stress is
observed. Two discretizations are considered: a coarse discretization with 99 664 nodes,
illustrated in Figure 4.1; and a fine discretization with 582 884 nodes, illustrated in Figure 4.2.
The FEA models simulated for comparison purposes employ similar discretization levels.

As a show of confidence, both methods achieve relatively similar levels of displacement,
with some minor differences. Both methods predict a displacement of roughly 1.30 in for the
coarse refinement. At the fine refinement, the RKPM method experiences less displacement
with a predicted value of 1.27 in whereas the FEA solution remains largely the same. This
behavior is curious as variational approaches are expected to converge from the stiff side.
Additionally, the stresses in the aluminum cannister are much higher than the foam block, as
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one would expect due to the large difference in material stiffnesses. Both discretizations show
the same stress levels. Conversely, the foam experiences much more plastic deformation.

Although the solutions typically agree with each other, the solutions employing RKPM
appear to have non-physical behavior. Figure 4.1 shows axisymmetric behavior in the FEA
solution whereas the RKPM method appears to have spurious or, more bluntly, wrong results.
This may indicate issues and coding errors within the code base and require closer inspection
to determine the root of the error. Although less pronounced, the same trend may be
observed in Figure 4.2. For the fine discretization, non-physical stress waves may be observed
in the aluminum housing, indicating possible instabilities related to RKPM.

Figure 4.3 compares the deformations between the two meshes localized around the corner
of the impactor. Although the FEA solution runs without issue in this example, likely
because of the use of uniform-gradient hex elements, it experiences large mesh distortions
which introduce error into the analysis. The RKPM analysis does not suffer from this
limitation, although the spurious behavior is questionable. The FEA mesh itself may inhibit
the foam material from “squeezing” out between the impactor and the aluminum cannister.
For the coarse model, the interior node must slip around the corner of the impactor before
the material is allowed to deform through the gap as the foam is compressed. In contrast,
the RKPM method readily begins to deform between the impactor and the cannister due to
the absence of a mesh.

The external energy, kinetic energy, and internal energy were tracked in both the FEA
and RKPM analyses. They are shown below in Figure 4.4. It can be observed that both
methods produce relatively the same energies for analysis. However, what comes as a slight
surprise is the determination of external energy for RKPM. At the beginning of analysis, the
external energy of both FEA and RKPM are roughly equal, whereas later on the external
energy for RKPM is somewhat below that of FEA. This is unexpected and a potentially
indicates a problem within the energy calculation within the code.

During the RKPM analysis, significant oscillation of the critical time step was observed.
Because there no longer exists a mesh for which to estimate the time step on an element basis,
other methods have to be considered. Instead of considering a characteristic element length,
the RKPM uses the support distance instead as well as the wave speed of the material given
by the effective lamé parameters and material density. The integration method (SCNI, SNNI,
VCSNNI) also affects the critical time step [1, 12]. In the foam crush analysis, significant
oscillation could be observed, shown in Figure 4.5.
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(a) RKPM and FEA displacement comparison

(b) RKPM and FEA stress comparison

Figure 4.1: Foam crush response, coarse discretization (99 664 nodes)
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(a) RKPM and FEA displacement comparison

(b) RKPM and FEA stress comparison

Figure 4.2: Foam crush response, fine discretization (582 884 nodes)
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Figure 4.3: Foam crush response at corner of impactor

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time

0

10000

20000

30000

40000

50000

60000

70000

En
er

gy

RKPM IE
FEM IE
RKPM KE
FEM KE
RKPM EE
FEM EE

Figure 4.4: Foam crush energy comparison

32



0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time

0

1

2

3

4

5

6

Cr
iti

ca
l t

im
e 

st
ep

1e 8

RKPM
FEM

Figure 4.5: Foam crush critical time step
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Chapter 5

Future Goals for RKPM

A number of different capabilities are targeted as future goals for the next fiscal year.

Currently, RKPM is implemented using a Lagrangian formulation. This formulation
requires the deformation gradient, F , to remain positive definite at all of the evaluation
points within the domain in order to convert the Cauchy stress returned by the LAME
material library to first Piola-Kirchhoff stress [8]. Should F lose its postive-definiteness, the
method will terminate. This makes it difficulte to model phenomena with extremely large
deformation such as fracture.

To make the method more versatile, the RKPM method should be updated to give the
option to use the semi-Lagrangian formulation. This formulation acts by moving the nodes
with the material points, but the kernels associated with the RK shape function remain in
an Eulerian formulation. That is, their kernel supports do not distort with the material
although the node itself does. This introduces a time-dependence into the shape functions
and thus a velocity component into the governing equation of motion.∫

Ωx

δuiρüidΩx +

∫
Ωx

δu(i,j)σijdΩx =

∫
Ωx

δuibidΩx +

∫
∂Ωh

x

δuihidΓ (5.1)

The semi-Lagrangian approach uses the approximation as follows.

ψI(x) = HT (0)M−1(x)H(x− x(XI , t))φa(x− x(XI , t)) (5.2)

M(x) =
NP∑
I=1

H(x− x(XI , t))H
T (x− x(XI , t))φa(x− x(XI , t)) (5.3)

HT (x− x(XI , t)) =
[
1 x1 − x1(XI , t) x2 − x2(XI , t) . . . (x3 − x3(XI , t))

n
]

(5.4)

Here, x refers to the current coordinate given by the mapping x = φ(X, t) whereas X refers
to the referential coordinate. By approximating the velocity as opposed to displacement in
the solution space, we can take a single derivative on ψI , resulting in

üi(x, t) = v̇i(x, t) =
NP∑
I=1

ψI(x)v̇iI(t) + ψ∗I (x)viI(t) (5.5)

Inserting the above into Equation 5.1, results in the following discrete system of equations.

Mv̇ +Nv = f ext
I − f int

I (5.6)
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where

MIJ =

∫
Ωx

ρψI(x)ψJ(x)dΩ (5.7)

NIJ =

∫
Ωx

ρψI(x)ψ∗J(x)dΩ (5.8)

f int
I =

∫
Ωx

BT
I σdΩ (5.9)

f ext
I =

∫
Ωx

ψIbdΩ +

∫
∂Ωh

x

ψIhdΓ (5.10)

Specifics can be found in Guan [8]. The semi-Lagrangian formulation requires a robust
neighbor search algorithm. This is because the kernels no longer deform with the material,
thus allowing nodes to gain and lose neighbors as the material deforms. Neighbor search
algorithms which perform this task already exist within the Sierra/SM framework and could
easily be modified to work with RKPM. In addition, the SNNI and VCSNNI integration
schemes are required here, since now the integration cells must be updated according to the
deformation in the material. Generating conforming cells becomes prohibitively expensive
to create, and SNNI or VCSNNI must be used instead.

Moving to a semi-Lagrangian framework allows for modeling of large deformation type
problems. Because the semi-Lagrangian method no longer depends on the deformation
gradient, F , issues associated with it losing invertibility is obviated [8]. This allows for the
modeling of extremely large deformation such as shear banding in soft material. An example
of the semi-Lagrangian capability is illustrated in Figure 5.1.

Related to the above, soft-target impact between two bodies will greatly benefit from
the semi-Lagrangian analysis. The large deformation will allow for materials with large void
dilitation as well as shear banding. This topic is of great interest for particular explosives
which become more sensitive to these phenomena.

Finally, with the advent of large deformation capabilities, fracture and fragmentation are
more readily modeled with RKPM. By attaching a damage parameter, particles are allowed
to separate from the block. This simulation of fracture is not the most realistic, as the
simulation would produce a particle spray. However, it is a step in the direction towards
full-fledged fracture, where an evolving fracture surface and contact definition would be
required to define the interactions between pieces or “chunks” of separated material.

An overview of the various targets, the current capabilities within Sierra/SM, and po-
tential advantages of using RKPM are presented in Table 5.1.
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Figure 5.1: Penetration of bullet through concrete [8]

Table 5.1: Target applications of RKPM

Target Application Current Capability Advantages of RKPM

Large deformation FEA remeshing/remapping RKPM Semi-Lagrangian
avoids mesh entanglement

Impact/Penetration Cavity expansion, FEA ele-
ment death, coupled CTH-
Presto

RKPM Semi-Lagrangian

Fracture/Fragmentation Element death, XFEA RKPM Semi-Lagrangian
Rapid analysis Meshing with Cubit-

SCULPT
RKPM is semi-meshfree
and can use vorocrust
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Chapter 6

Current Issues

A number of issues still exist in the RKPM implementation of the Sierra/SM package
which need to be addressed.

The semi-lagrangian formulation for RKPM needs to be implemented, especially to meet
future milestones for RKPM. To accomodate this, the SNNI and the VCSNNI integration
schemes must be verified and thoroughly tested. The SNNI and VCSNNI options are cur-
rently implemented and are used in the test repository for Sierra/SM. However, under some
problems, the analyses failed to initialize when either SNNI or VCSNNI were specified. This
may be related to memory issues and/or the use of additional stabilization. For general use
from an analyst perspective, this option must be made more robust.

Contact may only be defined between an RKPM block and a FEA block. All other
methods fail. This is due to the lofted particle surface used to define a surface for particle
methods. This creates difficulty when attempting to define contact between two particle
blocks. The lofted geometry creates a discontinuous contact surface and can allow two
particle blocks to slip through each other under large deformations. This limitation also
precludes self contact in RKPM analysis. In addition, all nodes of the RKPM block become
lofted, even those that are not on the contact surface. Finally, the contact definition uses
the generalized displacement instead of the true physical displacement.

Performance of RKPM analysis is a major detractor, both from a CPU perspective and
a memory perspective. On average, the RKPM analysis will run 10-20 times as slow as
a similarly defined problem using FEA. This may be attributed to the number of node
neighbors, number of evaluation points associated with the integration cell of each RK node,
and the critical time step. This may potentially be corrected by re-factoring the code base
and identifying areas for improvement. The code will benefit both in terms of memory and
performance and also from a maintainability standpoint.

The ability to define different material definitions within the same RKPM block currently
does not exist. This requires a weak discontinuity where displacements are continuous but
the strains across the material interface is not. Although not tested, one may potentially
define two separate blocks and use a tied contact definition to simulate this. The presence
of the generalized displacement coordinate may complicate this method of analysis.

Some applications have non-physical behavior when undergoing extreme plastic deforma-
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tion. In Section 4, the solution exhibits asymmetric deformations in the tangential coordi-
nate, whereas the FEA solution maintains axisymmetry. This may be attributed to stability
issues which may arise when using SCNI or from flaws in the code base for RKPM.

Certain materials (especially those currently in development) do not work with RKPM.
This was encountered when attempting to use the foam damage material model with RKPM
and the analysis failed to initialize. This will probably require additional class member
functions similar to other elements in the production code to allow RKPM to pass additional
information necessary for these materials.

The time step for the RKPM analysis seems rather restrictive compared to FEA. For
the problem as described in Section 4, the time step appeared to oscillate after enough
deformation had occurred. This may be physical, given the softer foam block experiences a
large amount of deformation and plasticity. The oscillations could then be a result of RKPM
nodes sliding past each other due to the deformation. However, the total timestep oscillated
between 4.4× 10−8 s to 9.0× 10−10 s, adding significant time to the analysis in general.

Capability Matrix

There are a number of capabilities within the RKPM analysis which either are missing
or require special attention. These features are listed in Table 6.1 and are ordered in terms
of highest priority according to the application they may apply to.

RKPM Improvements

With the capability matrix as outlined in Table 6.1, the effort/cost of implementing the
various capabilities needs to be accounted for.

The semi-Lagrangian uses velocity as the independent variable as outlined in Section 5 [8].
As such, its implementation requires a different routine than for RKPM solved in the La-
grangian formulation. The central difference method of time integration may still be used.
Much of the functionality required for semi-Lagrangian such as SNNI and VCSNNI are
already implemented within the code, although they may require additional testing.

A continuous surface for the purpose of imposing contact between RKPM bodies and with
bodies with other formulations is highly desirable for soft-target impact analysis. This may
be achieved using a level-set method to implicitly define a surface between RKPM blocks [6].
Using this method, the lofted icosahedra and the gaps associated with them described in
Section 2 would be removed. This allows for a more intuitive contact definition between
RKPM blocks. Contact with FEA blocks do not offer shape functions outside the support
of the element and thus using the level-set with them would require additional functionality
such as ghost elements.
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Table 6.1: Capability matrix for RKPM analysis

Capability Intermediate Solu-
tion

Preferred Solution Application

Contact Lofted Spheres Implicit surface defi-
nition

Soft target impact

Large Deformation Lagrangian formula-
tion (limited)

Semi-Lagrangian
formulation

Soft target impact

Fracture None Semi-Lagrangian
formulation

Blast & fracture ap-
plications

Multiple Material
Definitions

Tied Contact Basis Function En-
richment

Blast on Heteroge-
neous materials

Traction BCs Use FEA surface and
integration

Use RKPM implicit
surface and integra-
tion

Blast and Pressure
problems

Body Forces Use FEA nodal mass Use RKPM nodal
mass

Basic BVPs

Lanzcos Time Con-
trol

Use nodal critical
time step

Integrate RKPM
with FETI

Potentially faster
analysis

Restart None Functionality similar
to FEA

Sierra/SM standard
functionality

Using enrichment, RKPM may be coupled with FEA [9]. This would have the advantage
of using FEA on the surface of the body and use its capabilities to apply boundary conditions
and model interactions with other finite element bodies. This solution has its complexities,
as Sierra/SM would need to identify merged blocks with separate element formulations. The
RKPM block uses enriched shape functions at the interface to seamlessly merge with the
FEA block.

Integration with the FETI package in Sierra/SM would allow the method to be run
implicitly in Adagio. Not only that, but the Lanzcos method for determining eigenvalues
could also lead to a more efficient analysis similar to the procedure described in Chapter 3
of the Sierra/SM User Manual [14].

Finally, an issue exists involving the modeling of concave surfaces with RKPM. This is
an issue with meshless methods in general. RK nodes will associate with neighbors that
are located across the surface of the body at concave geometries. In other words, a straight
line traveling between the nodes would cross the surface. This introduces an interaction
at that location and does not accurately model the physics there. A potential fix would
involve using an existing ray-trace algorithm to identify such node pairs and modify their
interactions accordingly.

A summary of the possible items to implement and their projected costs is given in
Table 6.2.
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Table 6.2: Cost/benefit table of potential items to implement in RKPM

Item Specifics Implementation
Cost

Implementation
Priority

Semi-
Lagrangian
Formulation

Requires solver to use velocity as
independent variable

Low to medium High

Performance RKPM is CPU & memory
heavy; re-factor of code likely re-
quired

Medium High

Implicit sur-
face

Level-set surface definition for
contact; solves contact between
RKPM bodies

High High

RKPM-FEA
Coupling

Simplifies complexities with con-
tact

High Medium

FETI inte-
gration

Benefits performance by utiliz-
ing Lanzcos

High Low

Basis Func-
tion Enrich-
ment

Requires redefining H vector to
allow other basis functions

Medium to High Low

RKPM nodal
mass

Potentially already implemented Low Low

Non-convex
geometry

Ray-trace algorithm Medium to High Low
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